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Background: The lack of effective pharmacological measures during the early phase of the COVID-19 pan- 
demic prompted the implementation of non-pharmaceutical interventions (NPIs) as initial mitigation strategies. 
The impact of these NPIs on COVID-19 in Nigeria is not well-documented. This study sought to assess the effec- 
tiveness of NPIs to support future epidemic responses. 

Methods: Daily COVID-19 cases and deaths were analysed using smoothed variables to identify transmission 
trends. Regression analysis and clustering algorithms were applied to evaluate the impact of each NPI. 

Results: Multiple transmission peaks were reported, with the highest smoothed daily new cases (approximately 
1790) observed around 29 December 2021 and smoothed daily new deaths (approximately 23) peaking around 
8 September 2021. NPIs such as public transport (coefficient value −166.56, p = 0.01) and workplace closures 
(coefficient value −150.06, p = 0.01) strongly correlated with decreased case numbers. This finding highlights 
the importance of mobility control and non-essential workplace management in slowing infection transmission 
during an outbreak. Public transport restrictions (coefficient value −2.43, p < 0.001) also had a direc t effec t on 
death reduction. 

Conclusions: Public transport restrictions and workplace closures correlated with reductions in the number of 
cases and deaths. These findings can guide future pandemic responses to enhance favourable public health 
outcomes. 

Keywords: clustering algorithms, COVID-19, epidemic responses, non-pharmaceutical interventions, outbreak, regression analysis. 
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provide valuable insights into optimizing public health responses 
to enhance preparedness for emerging or re-emerging infectious 
diseases in the region. 
Randomized controlled trials (RCTs) are often considered the 

gold standard for evaluating the effectiveness of interventions.6 , 7 
However, conducting RCTs during a pandemic poses significant 
ethical and logistical challenges. Specifically, randomizing popu- 
lations to different intervention arms during an ongoing outbreak 
could portend life-threatening implications.8 
Mathematical modelling of disease transmission dynamics 

has traditionally been used to investigate the impact of NPIs 
on the spread of infectious diseases.9 –12 These models rely on 
a set of assumptions and parameters that describe the inter- 
actions between susceptible, exposed, infectious and recovered 
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ntroduction 

he global health crisis caused by the emergence of severe acute 
espiratory syndrome coronavirus 2 (SARS-CoV-2) necessitated a 
lobal public health response.1 , 2 As vaccines and effective ther- 
peutic options were largely unavailable during the early stages 
f the pandemic, public health stakeholders implemented non- 
harmaceutical interventions (NPIs) as primary response strate- 
ies to contain viral transmission and safeguard public health.3 –5 
iven the widespread use of NPIs during the early stages of the 
andemic, it is essential to evaluate their effectiveness to better 
nform future public health strategies. This evaluation is partic- 
larly important for Nigeria, where the impact of NPIs on public 
ealth needs to be understood in the context of local challenges 

nd health system capacities. Evaluating the benefits of NPIs will 
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individuals within a population.13 , 14 While this approach is use-
ful, the accuracy of the model depends on the validity of un-
derlying assumptions, which may not always hold true during a
rapidly evolving pandemic.15 , 16 Factors such as changes in virus
transmissibility, public adherence to NPIs and the introduction
of new interventions can significantly affect the accuracy of the
model.17 –19 These challenges highlight the need for alternative
approaches to evaluate NPIs. Machine learning (ML) algorithms
offer a promising alternative for evaluating NPIs. ML tools can
analyse vast amounts of data to identify patterns that may not
be apparent through traditional statistical methods.20 –22 This ap-
proach is particularly valuable during a pandemic, where real-
time data on case numbers, positivity rates and deaths can be
continuously updated and analysed. 
In this study, we explored clustering algorithms and regression

analysis for a retrospective evaluation of NPIs against COVID-19
in Nigeria. We analysed temporal data on COVID-19 cases and
deaths. We also assessed the effectiveness of different NPIs in
containing the spread of the virus and mitigating their impact on
overall public health outcomes. 

Methods 
Data collection 
De-identified COVID-19 data were sourced from Our World in
Data,23 an open-access database ( https://ourworldindata.org/
coronavirus). The granular dataset included epidemiological (e.g.
confirmed cases and deaths), demographic, healthcare and in-
tervention information. 

Description of NPIs 
The NPIs investigated include face coverings, school closures,
workplace closures, public transport cancellation, cancellation of
public events, stay home requirements, contact tracing, testing
policy and vaccination policy ( Supplementary Table S1). The use
of facial covering was categorized into five levels of policy im-
plementation: no policy (0); recommended (1); required in spe-
cific shared or public spaces outside the home where others were
present, or in situations where social distancing was not feasi-
ble (2); required in all shared or public spaces outside the home
where others were present or in all situations where social dis-
tancing was not feasible (3) and required outside the home at all
times, irrespective of location or presence of others (4). Regard-
ing school and workplace closures, the following categories were
specified: no data available (NaN), no measures implemented (0),
recommendations in place (1), required closures at certain levels
(2) and required closures at all levels (3). Public event cancella-
tions were categorized as no data available (NaN), no measures
implemented (0), recommended cancellations (1) and required
cancellations {2}. Stay home policies were grouped into four cat-
egories: no measures implemented (NaN); recommended stay
home advisories (0); required stay home orders with exceptions
for essential activities like exercise, shopping and necessary trips
(1) and required stay home orders with minimal exceptions, such
as leaving the house only once every few days or limiting outings
to one person at a time (2). Categories of public transport closures
2

included no data available (NaN), no measures implemented (0),
recommended closures or reduced service (1) and required clo-
sures or significant restrictions on usage (2). Lastly, vaccination
policies had six categories: no availability (0); availability for one
of the following groups: key workers, clinically vulnerable groups,
elderly groups (1); availability for two of the following groups: key
workers, clinically vulnerable groups, elderly groups (2); availabil-
ity for all three groups: key workers, clinically vulnerable groups,
elderly groups (3); availability for all three groups plus partial ad-
ditional availability for select broad groups or ages (4); and univer-
sal availability (5). This was solely a vaccination availability policy
and did not reflect the actual vaccination coverage, which was
not the focus of this current study. 

Feature selection and engineering 
Data cleaning, exploratory analysis and feature engineer-
ing were performed in Google Colab with Python 3.10
( https://github.com/oyebolakolapo/Retrospective-Evaluation-
of-Non-Pharmaceutical-Interventions-against-COVID-19-in-
Nigeria.git). Missing values (NaN) were expunged from the anal-
ysis ( Supplementary Figure S1). We extracted features such
as intervention measures (e.g. testing policy, contact tracing,
vaccination policy, face coverings, stay home restrictions, school
and workplace closures, embargo on public events and public
transportation), sociodemographic factors (e.g. population den-
sity, human development index, gross domestic product per
capita, extreme poverty rate) and healthcare capacity (e.g. hos-
pital beds, intensive care unit capacity, handwashing facilities)
from the dataset. A p-value ≤0.05 was considered statistically
significant. 

Correlation analysis 
To identify the NPIs associated with a reduction in COVID-19
spread, we computed the Pearson correlation coefficients be-
tween individual intervention measures and key epidemiological
metrics, including new cases and deaths. Interventions demon-
strating strong negative correlations with these outcomes were
considered to have a greater impact on controlling the transmis-
sion of the virus. To facilitate interpretation of the correlation re-
sults, we utilized scatter plots and heat maps. These graphical
representations enabled us to identify patterns and trends in the
data and assess the relative effectiveness of various intervention
strategies. 

K-means clustering and silhouette scoring 
K-means clustering offers advantages in grouping data points
with similar characteristics, making it a powerful tool for identify-
ing patterns in intervention measures. As such, we implemented
K-means clustering algorithms to group data points or interven-
tion measures with similar characteristics to enable the identi-
fication of potential patterns in implementation effectiveness or
impact. To achieve this, we determined the optimal number of
clusters (K) using the elbow method.24 The optimal number of
clusters is at the ‘elbow’ of the graph, where the inertia would
decrease slowly if the number of clusters was increased. In ad-
dition, we employed silhouette scoring as a metric to assess the

https://ourworldindata.org/coronavirus
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Figure 1. Trend analysis of daily new COVID-19 (A) cases (smoothed) and (B) deaths (smoothed) in Nigeria from January 2020 to December 2022. 
The coinciding peak dates are indicated on the curve. DD-MM-YYYY date format was used in the plots. 
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oherence and separation of clusters generated through these 
lgorithms.25 Silhouette scores were calculated for each data 
oint to provide insights into the quality of clustering by mea- 
uring the similarity within clusters compared with neighbouring 
lusters. This evaluation process allowed us to identify the opti- 
al number of clusters to ensure robustness of the analysis. After 

dentifying the optimal number of clusters using silhouette scor- 
ng, we applied principal component analysis (PCA) to reduce the 
imensionality of the data and visualize the cluster distributions 
n a two-dimensional (2D) space. PCA was used post-clustering 
o provide a clear visual representation of how interventions 
rouped within each cluster, which made it easier to interpret 
elationships and overlaps between intervention policies. 

egression model 
he performance of the regression model in predicting the num- 
er of COVID-19 cases and deaths following the implementa- 
ion of NPIs was evaluated. Two scatter plots were generated 
o visualize the relationship between predicted and actual val- 
es, one for cases and one for deaths. Moreover, a regression 
ine was fitted to the data to illustrate the overall trend of pre- 
ictions compared with actual values. The predictive accuracy 
f the model was then assessed by comparing the scatter plots 
o diagonal dashed lines. The determination of predictive accu- 
acy was facilitated by calculating the R2 values, as presented in 
upplementary Table S2. 

esults 
rend analysis and transmission peaks 
e determined the number of daily new COVID-19 cases and 
eaths from 5 January 2020 to 31 December 2022 to iden- 
ify transmission trends, peaks as well as troughs. We adopted 
he mathematically adjusted (smoothed) variables of daily new 

ases and deaths in our analysis to control for daily fluctua- 
ions and provide a clear picture of underlying trends. The first 
eported case in the country was on 1 March 2020, peaking on 
 July 2020 with approximately 610 new smoothed cases (Fig- 
re 1 A). Short intervals between peaks of new cases were ob- 
erved during the early months of the outbreak, particularly from 

 July 2020 to 27 January 2021, after which a longer trough in- 
erval was observed until 25 August 2021. However, the peak 
ntervals narrowed shortly afterwards until 29 December 2021, 
hen the number of new cases reached the maximum peak be- 
ore plummeting. The report of new COVID-19-related deaths fol- 
owed a somewhat different pattern. The first reported COVID- 
9-linked death in the country was on 29 March 2020, peaking 
n 6 May 2020, with approximately seven new smoothed cases 
Figure 1 B). There were a couple more peaks within short inter- 
als after which the maximum peak of new daily deaths was 
ecorded on 8 September 2021. The last documented daily new 

eath (smoothed) was reported on 18 September 2022. 

orrelation analysis 
n Figures 2 and 3 , we show how different COVID-19 interven- 
ions related to each other and how they possibly influenced 
ew cases and deaths. High correlations were observed between 
ertain intervention measures (Figure 2 ). For instance, testing 
nd vaccination policies (0.85), cancellation of public events and 
orkplace closures (0.84), cancellation of public events and stay 
ome requirements (0.81) were social isolation strategies that 
ere likely implemented together or had similar effects on the 
pidemiology of the virus in the country. Cancellation of public 
vents and school closures (0.69), workplace and school closures 
0.68), workplace closures and stay home requirements (0.67) 
nd school closures and public transport cancellation (0.55) were 
lso moderately correlated. 
3
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Figure 2. Correlation matrix of relationships between non-pharmaceutical COVID-19 interventions and outcomes. The values ranged from −1 (per- 
fectly negative correlation) to 1 (perfectly positive correlation), with 0 indicating no linear association. Strong positive correlations (yellow squares) 
indicate a direct correlation between variables while strong negative correlations (purple squares) indicate an inverse trend. 
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To determine the interventions that were most effective in
reducing the spread of the virus, we visualized their correlation
with the number of new COVID-19 cases (Figure 3 A). Facial cov-
ering and school closures showed moderate positive correlation
(0.49) with fewer new cases, followed by stay home requirements
(0.46), while cancellation of public events (0.36) was weakly cor-
related. Similarly, cancellation of public events (0.58) showed
the highest positive correlation with the number of COVID-19-
related deaths (Figure 3 B). This was followed by school (0.57)
and workplace (0.56) closures, respectively. Conversely, testing
and vaccination policies were weakly correlated with a reduc-
tion in new cases ( −0.15 and −0.29, respectively), deaths ( −0.17
and −0.35, respectively) and positive rates ( −0.32 and −0.49,
respectively). 

K-means clustering 
To determine intervention measures with similar characteristics
and identify potential patterns in implementation effectiveness,
we implemented a K-means clustering algorithm. The elbow plot
4

in Figure 4 displayed inertia (within-cluster sum of squares) as a
function of the number of clusters (K). As the number of clus-
ters increased, the inertia decreased because each data point
could be assigned to a cluster more closely. However, at some
point, the rate of decrease slowed, forming an elbow in the plot.
This point indicated the optimal number of clusters and repre-
sented a balance between minimizing inertia (making the clus-
ters internally coherent) and avoiding overfitting (i.e. creating too
many clusters that might not generalize well to new data). In this
case, the elbow point suggested an optimal choice of four clusters
(Figure 4 ). 

Silhouette scoring and PCA 

In real-world datasets, there is often no clear elbow inflection
point to identify the right ‘K’ using the elbow method, as was
the case in this study. To circumvent this, we calculated the
silhouette scores of possible clusters (K = 3–6). The silhouette
score was maximum (0.58) for K = 3 (Figure 6 ), but that was not
the final index for optimal K determination. For a given K, all the
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Figure 3. Correlation between NPIs and new COVID-19 (A) cases and (B) deaths. High correlation values suggest lower new COVID-19 cases and 
deaths with NPIs. 

Figure 4. Elbow plot to determine the optimal number of clusters of NPIs in the K-means clustering algorithm. The graph shows the within-cluster 
sum of squares (WCSS) values on the y-axis corresponding to the different values of K (on the x-axis). The optimal K value is the point at which the 
graph forms an elbow. 
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lusters were expected to have a silhouette score (represented 
y the red dotted line in Figure 6 ) greater than the average 
core of the sample set represented. Only cluster 3 followed 
his assumption, so K = 3 was selected as our optimal cluster. 
he 2D data points of NPIs after dimensionality reduction were 
epresented using PCA. Each point represents an intervention, 
ith points grouped to the same cluster suggesting similarities 
r overlap between intervention policies (Figure 5 ). Clusters that 
ere more spread out represented interventions with diverse 
r conflicting responses across selected features. For instance, 
ata points for contact tracing seemed to form a distinct cluster 
Figure 6 ; Supplementary Figure S2). 
5
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Figure 5. Silhouette scores of cluster numbers. Each individual object is represented on the y-axis and the red dashed line indicates the silhouette 
coefficient for that sample. A higher silhouette coefficient indicates better clustering quality for the corresponding sample. The x-axis represents the 
silhouette score. 
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Regression model 

We evaluated the regression model’s performance for predicting
the number of cases and deaths following NPI implementation.
Two scatter plots were generated, one for cases and one for
deaths (Figure 7 ). In addition, a regression line was fitted to the
data, depicted by the green dashed line indicating the overall
trend of predictions compared with actual values. By comparing
the scatter plots with the diagonal dashed lines, we assessed
6

the model’s predictive accuracy. This was determined using
R2 coefficients ( Supplementary Table S2). In both plots, we
found moderate R2 values for cases (0.48) and deaths (0.54),
with interventions correlating with reduced COVID-19-related
deaths and cases (except stay home requirements [p = 0.50]
and cancellation of public events [p = 0.08]). Furthermore, the
impact of each intervention on the predicted number of cases
and deaths was analysed using coefficient plots (Figure 8 ). These

https://academic.oup.com/inthealth/article-lookup/doi/10.1093/inthealth/ihae065#supplementary-data
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Figure 6. The 2D PCA of intervention data points and boundary circles to delineate the main clusters. The grey circles represent the boundary circles 
for the main clusters. These circles are drawn around the centroids of the main clusters, with a radius equal to the maximum distance from any point 
within the cluster to its centroid. The circles serve as a visual representation of the extent or spread of each main cluster. 
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lots displayed horizontal bars for each intervention, with the 
ar length representing the coefficient value. Positive coefficients 
ndicated that increasing the intervention was associated with 
n increase in predicted cases/deaths. Conversely, negative coef- 
cients suggested a decrease in predicted cases/deaths with an 
ncrease in the intervention. The absolute value of the coefficient 
eflected the strength of the effect, with larger values indicating 
 stronger impact on the prediction. Based on the coefficient 
lots, interventions such as public transport closures (coefficient 
alue −166.56, p = 0.01), workplace closures (coefficient value 
150.06, p = 0.01), contact tracing (coefficient value −74.85, 
 = 0.01) and vaccination policy (coefficient value −47.06, 
 = 0.04) had strong effects on reducing COVID-19 cases (Fig- 
re 8 A). These intervention measures, except workplace closures 
coefficient value 1.46, p = 0.01) also correlated with a reduction 
n COVID-19-related deaths in the country (Figure 8 B). Contact 
racing (coefficient value −0.58, p = 0.05) was also associated 
ith a reduction in deaths, but the effect size was weaker, unlike 
ublic transport closures (coefficient value −2.43, p < 0.001). 

iscussion 

he global threat of the COVID-19 pandemic necessitated the 
doption of NPIs to mitigate rapid spread of the SARS-CoV-2 virus. 
espite the widespread implementation of NPIs, their long-term 

ffectiveness is unknown. A robust evaluation framework for NPI 
ffectiveness is required to guide future responses to emerging 
athogens. This study used ML techniques to retrospectively eval- 
ate the effect of NPIs on new cases and deaths in Nigeria during 
7
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Figure 7. Regression model of predicted and actual new (A) cases and (B) deaths following non-pharmaceutical COVID-19 interventions. Each plot 
shows actual values (x-axis) versus predicted values (y-axis) for data points in the testing set. The diagonal dashed line illustrates perfect predictions, 
where the predicted and actual numbers of cases matched. The green dashed lines in the scatter plots represent the overall trend between actual 
and predicted values. A regression line closely following the diagonal line suggests a strong linear relationship between the model’s predictions and 
the actual data. R2 values range from 0 to 1, with higher values indicating a better fit between the model’s predictions and the actual data. 
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the COVID-19 pandemic. By leveraging clustering algorithms and
regression analysis on temporal data, this study provided a pre-
liminary assessment of NPI effectiveness. 
The analysis of new COVID-19 cases showed short intervals

between peaks of new cases during the early months of the
pandemic (March–July 2020), suggesting rapid transmission and
potential challenges in controlling the spread of the virus early
on. A longer trough interval was observed subsequently from
27 January 2021 to 25 August 2021, indicating a period of de-
creased transmission due possibly to a successful introduction or
stricter implementation of interventions to curb the spread of the
virus. However, peak intervals narrowed shortly afterwards be-
tween 25 August 2021 and 29 December 2021, when the num-
ber of new cases reached a maximum peak before declining sig-
nificantly. This demonstrated fluctuating transmission patterns
that coincided with the relaxation of COVID-19 restrictions in
Nigeria.26 
Daily new COVID-19 deaths followed a somewhat different

pattern compared with cases. The first reported COVID-19-linked
death in the country occurred on 29 March 2020, with a peak ob-
served on 6 May 2020, with approximately seven new (smoothed)
deaths. Unlike the cases, there were multiple peaks of daily re-
ported deaths within short intervals. This suggests a significant
burden on healthcare systems, potential challenges in manag-
ing severe cases or possible lapses in NPI adherence and imple-
mentation. The maximum peak of new daily deaths was recorded
on 8 September 2021. The last documented daily new death
(smoothed) was reported on 18 September 2022, indicating a
potential decline in mortality rates and the possibility of achiev-
8

ing control over the pandemic’s impact on healthcare systems.
The COVID-19 transmission and mortality patterns observed
in the country aligned with trends observed in other African
countries.27 
Furthermore, when clustering algorithms were adopted to

gain insights into the underlying patterns within intervention
measures, the elbow plot initially suggested four clusters as opti-
mal. However, silhouette analysis revealed that K = 3 offered the
highest score and met the criteria of having a score exceeding the
average sample score. This highlights the importance of combin-
ing multiple metrics for robust K selection in K-means clustering,
especially when the elbow method presents ambiguity.28 By
reducing dimensionality, we effectively projected interventions
onto a 2D plane,29 , 30 where closer proximity indicated greater
similarity in policy characteristics and implementation effective-
ness. Conversely, dispersed clusters represented interventions
with diverse or potentially conflicting effects across measured
features. This was exemplified by the distinct clustering of
contact tracing measures. 
Moreover, we integrated a linear regression model to pinpoint

intervention effectiveness. While not exceptionally high, the
model achieved somewhat moderate correlations based on the
R2 values. This finding suggests the model had some success
in predicting case and death outcomes per intervention. To de-
termine which interventions had the most significant positive or
negative coefficients (strongest effects) on predicted cases and
deaths,31 , 32 we examined the coefficient analyses and observed
significant associations between several NPIs and a reduction
in predicted COVID-19 cases and deaths. For instance, public



International Health

Figure 8. Coefficients of the effect of NPIs on new COVID-19 (A) cases and (B) deaths. Negative coefficients suggest a decrease in predicted 
cases/deaths with an increase in the intervention and vice versa. The absolute value of the coefficient reflects the strength of the effect, with larger 
values indicating a stronger impact on the prediction. 
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ransport closures appeared to be highly impactful in reducing 
ases. Workplace closures, contact tracing and vaccination 
olicy also displayed strong negative coefficients, implying their 
ffectiveness in curbing case numbers. Public transport closures 
ppeared to be particularly effective in reducing cases, potentially 
y limiting viral transmission across geographic areas. Workplace 
losures and robust contact tracing programs likely contributed 
y minimizing transmission within workplaces and communi- 
ies. The impact of these interventions possibly translated to a 
ecrease in predicted COVID-19 deaths as well.33 , 34 In addition, 
tay home requirements showed a significant association with 
educed deaths. Contact tracing also correlated with a decline in 
eaths, although the effect size was weaker compared with other 
easures. These findings align with other studies that demon- 
trated the effectiveness of layered interventions over any single 
easure.35 , 36 
However, it is important to note that correlation does not nec- 

ssarily imply causation, as observed relationships between in- 
erventions and outcomes could be influenced by extraneous 
easures beyond the analysed NPIs.37 , 38 Furthermore, the anal- 
sis focused on a specific set of interventions that might not 
ave been uniformly implemented at regional levels. In addi- 
ion, we did not observe a clear elbow inflection point to iden- 
ify the right K using the elbow method, which is a potential 
imitation to cluster determination. Moreover, the K-means algo- 
ithm adopted in this article is sensitive to the choice of centroids, 
nd the optimal number of clusters could vary depending on the 
ataset. Future research could explore more robust K-means ini- 
ialization techniques and consider incorporating other relevant 
eatures. 
l
onclusions 
his study presented a systematic ML approach for evaluating 
he efficacy of NPIs implemented during the COVID-19 pandemic. 
he findings theoretically offer decision support to policymakers 
nd public health authorities by highlighting the relative effec- 
iveness of various interventions to enhance pandemic response 
trategies and mitigation measures for future outbreaks. 

upplementary data 

upplementary data are available at International Health online. 
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